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Abstract:  9 

Slender bridge piers are critical components of a bridge’s seismic system; their significant flexibility and 10 

mass inertia amplify gravity-induced second-order effects and higher-mode contributions. However, 11 

engineering practice often simplifies the P–Δ effect to a single-degree-of-freedom amplification factor, 12 

which fails to fully capture the structural safety. To address this limitation, the present study discusses two 13 

high-precision, discretization-based dynamic analysis methods: the Differential Quadrature Method (DQM) 14 

and the Quadrature Element Method (QEM). Applied to various pier configurations, both methods can 15 

stably and efficiently capture dynamic responses under bidirectional seismic excitation, accurately 16 

revealing the influence of gravity loads and vertical ground motions on the lateral vibration characteristics 17 

of the piers, while comprehensively accounting for P–Δ effects throughout the full dynamic analysis. 18 

Numerical comparisons demonstrate that by simultaneously considering lateral and axial dynamic loads, 19 

these methods significantly improve seismic response prediction accuracy, providing a robust numerical 20 

tool for the seismic design and safety evaluation of tall bridge piers. 21 
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1. Introduction 25 

Many bridges seismic systems worldwide incorporate tall piers. Owing to their increased flexibility, 26 

higher ratio of self‐weight to tributary superstructure mass, and the coupled influence of axial loads on 27 

dynamic properties, the seismic response of tall piers differs markedly from that of short piers. The 28 

enhanced flexibility of tall piers lengthens their fundamental horizontal period, thereby reducing the 29 

seismic acceleration demand in accordance with response spectrum theory. Under such conditions, the 30 

implementation of base isolation or the design for high ductility is often neither economically justified nor 31 

structurally necessary. Consequently, tall piers are typically designed to remain elastic under seismic 32 

loading to ensure performance within the elastic range [1-4]. 33 

In most national bridge seismic design codes, the single-degree-of-freedom (SDOF) approach is 34 

widely adopted as a primary tool for seismic response analysis, particularly in cases where structural 35 

dynamics are dominated by the fundamental mode. Due to its computational simplicity and engineering 36 
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practicality, this method plays a central role in routine design applications. However, to ensure its 37 

applicability and reliability, design codes generally prescribe specific conditions under which the SDOF 38 

assumption is valid—primarily governed by the mass ratio between the pier and the tributary superstructure, 39 

as well as the modal characteristics of the system. For instance, Section 4.2.2 of Eurocode 8 – Part 2 40 

explicitly states that the fundamental mode method may only be applied when the pier mass does not 41 

exceed 20% of the supported superstructure mass [5]. Similarly, Section 4.7.4.3.2 of the AASHTO LRFD 42 

Bridge Design Specifications further defines the "Single-Mode Spectral Method" and the "Uniform Load 43 

Method" as simplified equivalent static procedures applicable to bridges where the first mode dominates 44 

and mass distribution is relatively regular [6]. In China, Specifications for Seismic Design of Highway 45 

Bridges (JTG/T 2231-01—2020) introduces geometric criteria to assess the validity of simplified models. 46 

Specifically, it requires that P–Δ geometric nonlinearity be considered when the ratio of the pier height to 47 

the shorter side of its rectangular cross-section exceeds 8, or when the height-to-diameter ratio of a circular 48 

pier exceeds 6 [7]. This provision, which directly references the seismic design criteria from CALTRANS, 49 

indirectly underscores the limitation of SDOF models in capturing the response of increasingly flexible 50 

systems where higher-mode effects become significant. In tall pier bridges, the mass of the pier typically 51 

exceeds that of the tributary superstructure, and the structural flexibility is considerably greater. Under 52 

such conditions, higher-mode contributions to seismic response become non-negligible. Continued 53 

reliance on SDOF models may thus lead to underestimation of structural demands. Accurate modeling of 54 

the pier geometry and inertia distribution, along with the use of multi-mode or time-history analysis 55 

methods, is essential to fully capture the dynamic behavior and to ensure analytical fidelity and seismic 56 

safety [8-10]. 57 

Recent shake-table and hybrid-model tests have demonstrated that higher-order modes play a pivotal 58 

role in the seismic response of tall bridge piers: they not only induce pronounced bending‐moment peaks 59 

at mid‑height but can also precipitate additional plastic hinges under intense ground motions (e.g., 60 

PGA > 0.8 g) [11-13]. Concurrently, axial loads exert a dual influence on pier dynamics—modifying 61 

natural frequencies and modal participation factors even within the elastic range, and markedly amplifying 62 

second‑order (P–Δ) effects as the structure approaches its collapse state. Although current practice often 63 

resorts to bending-moment amplification factors—derived from SDOF hysteretic models as per EC8 (§5.4), 64 

AASHTO LRFD (§4.5.3.2.2b)—these simplifications frequently fail to replicate the complex dynamic 65 

behavior of tall piers with sufficient fidelity.  66 

To overcome these limitations, Tubaldi [14] proposed a nondimensional analytical model that 67 

simultaneously accounts for axial loads and higher-mode effects; however, this model cannot 68 

accommodate time-varying axial loads induced by vertical seismic excitation. Building on this, the present 69 

study primarily introduces two high-precision methods for analyzing the dynamic P–Δ effect in tall bridge 70 

piers. These methods are based on the governing differential equations of a cantilever beam subjected to 71 

bidirectional coupled loads and are solved using the Differential Quadrature Method (DQM) and the Weak-72 

Form Quadrature Element Method (QEM), respectively. Numerical analyses of various practical pier 73 

configurations, benchmarked against the analytical solutions presented in [14], demonstrate the accuracy 74 

and broader applicability of the proposed approaches. 75 

2. Analytical Model and Formulation 76 
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As shown in Fig. 1, the slender bridge pier is modeled as a linearly elastic Euler–Bernoulli cantilever 77 

beam, with flexural stiffness EI(y) and axial stiffness EA(y), mass per unit length m(y), and a concentrated 78 

tip mass MT at the top. 79 

 80 

Fig.1. Geometry of the problem and pier model. 81 

In the structural model of Fig. 1, the lateral load H and the axial load P may vary arbitrarily as 82 

functions of t and y. Considering an infinitesimal element of length dy at coordinate y, its free‐body is 83 

shown in Fig. 1. Applying Newton’s second law in the horizontal and vertical directions then yields the 84 

element’s differential equations of motion: 85 

Horizon direction: 86 

𝑚(𝑦)
𝜕2𝑤

𝜕𝑡2
+

𝜕

𝜕𝑦2
[𝐸𝐼(𝑦)

 𝜕2𝑤

𝜕𝑦2
 ] +

𝜕

𝜕𝑦
(𝑁

𝜕𝑤

𝜕𝑦
) = 𝐻(𝑦, 𝑡) (1)  87 

Vertical direction: 88 

𝑚(𝑦)
𝜕2𝑣

𝜕𝑡2
−
𝜕

𝜕𝑦
[𝐸𝐴

𝜕𝑣

𝜕𝑦
] = 𝑃(𝑦, 𝑡) (2) 89 

Where the w(y, t) denotes the lateral displacement (positive to the right), and v(y, t) denotes the vertical 90 

displacement (positive downward). H(y, t) and P(y, t) are the lateral and axial distributed loads acting on 91 

the structure, respectively. N(y, t) denotes the axial force response. 92 

The time-varying axial force N(y, t) can be determined based on Hooke's law, namely 93 

𝑁(𝑦, 𝑡) = 𝐸𝐴(𝑦)
𝜕𝑣(𝑦, 𝑡)

𝜕𝑦
(3) 94 

By analyzing Equations (1), (2), and (3), it can be seen that the P–Δ effect constitutes a geometrically 95 

nonlinear problem. Eq. (2) can be solved independently to obtain the vertical displacement v(y, t), which 96 

is then substituted into Eq. (3) to calculate the axial force, followed by substitution into Eq. (1) to solve for 97 

the lateral displacement w(y, t). Solving these two equations allows for obtaining a high-precision dynamic 98 

P–Δ solution of the structure. 99 

2.1 Methodology Based on the DQM 100 

When applying the Differential Quadrature Method (DQM) to Equations (1) and (2), we first 101 

discretize these strong-form partial differential equations and then employ the DQ principle to establish 102 

the mapping relationships between the displacement to be solved and its derivatives, thereby obtaining the 103 

DQ-formulated differential equations. The detailed procedure has been thoroughly described in our prior 104 

work [15]. This paper focuses solely on presenting the fundamental concepts and workflow of the DQM 105 

to clarify the methodology. 106 
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By discretizing Eq. (1), it can be equivalently expressed in the following form: 107 

𝑚𝑢̈ +
1

𝐿4
(𝐸𝐼(𝜉) ∙ 𝑤(4) + 2𝐸𝐼′ ∙ 𝑤′′′ + 𝐸𝐼′′ ∙ 𝑤′′ + 𝐿2 ∙ 𝑁 ∙ 𝑤′′ + 𝐿2 ∙ 𝑁′ ∙ 𝑤′) = 𝐻(𝜉, 𝑡) (4) 108 

Employing the DQ principle to establish the mapping relationship and expressed in matrix form, it 109 

can be written as: 110 

𝑴𝒘̈ +
1

𝐿4
(𝑬𝑰 ∙ 𝑨(4) + 2𝑬𝑰′ ∙ 𝑨(3) + (𝑬𝑰′′ + 𝐿2 ∙ 𝑵) ∙ 𝑨(2) + 𝐿2 ∙ 𝑵′ ∙ 𝑨(1))𝒘𝑗 = 𝑯 (5) 111 

Here, matrix A denotes the weighting‐coefficient matrix of the DQ method. The static axial force N(y) 112 

is obtained from the following Eq. (6), while the time‐dependent axial force N(y, t) is computed by applying 113 

DQ discretization to Eq. (2) and incorporated at each time step during the time integration. 114 

𝑁(𝑦) = ∫ 𝑚(𝜉)𝑔𝑑𝜉
𝐿

𝑦

 (6) 115 

Eq. (5) can be solved using the Newmark‑β time integration method. When the right-hand side is set 116 

to zero, the structure’s natural dynamic properties are obtained; with seismic excitation applied, its dynamic 117 

response can be evaluated. However, directly introducing the concentrated top mass MT into the global 118 

mass matrix in the DQ framework leads to a discontinuity that may cause numerical instability or 119 

divergence. To address this issue, an interpolation-based method is adopted to construct a smooth mass 120 

distribution function m(y) that incorporates MT continuously, improving numerical stability and ensuring 121 

reliable dynamic response results [15]. 122 

2.2 Methodology Based on the QEM 123 

2.2.1 Formulation of the Hermite-type quadrature element 124 

Compared with the DQM, the QEM offers greater convenience in handling systems with 125 

discontinuous masses, as it integrates the advantages of both DQ and finite element concepts. By applying 126 

the weak form to the governing dynamic equations in strong form, expressions for the element kinetic and 127 

strain energy can be derived. 128 

𝑇 =
1

2
∫ 𝜌𝐴 (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

(7) 129 

𝑈 =
1

2
∫ 𝐸𝐼 (

𝜕2𝑤

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

(8) 130 

Meanwhile, the work done by the axial force 𝑁 and the transverse load 𝐻 can be expressed 131 

respectively as: 132 

𝑊𝑛 =
1

2
∫ 𝑁(𝑥)
𝐿

0

(
𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥 (9) 133 

𝑊ℎ = 𝑯
𝑇𝒘 = ∫ 𝐻(𝑥)

𝐿

0

𝑤(𝑥)𝑑𝑥 (10) 134 

A beam element is assumed to consist of Nn nodes, with one end node located at each boundary and 135 

the remaining nodes treated as internal nodes. Since axial deformation is neglected, each internal node 136 

possesses a single transverse degree of freedom, while each end node is assigned two degrees of freedom: 137 

transverse displacement and sectional rotation. The quadrature element model of the beam is illustrated in 138 

Fig. 2. 139 

 140 
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Fig.2. Nn-node quadrature Euler-Bernoulli beam element. 141 

The displacement field of the above Nn-node beam element can be assumed according to the Hermite-142 

type quadrature element formulation. 143 

𝑤(𝑥, 𝑡) =∑𝜑𝑖(𝑥)𝑤(𝑥𝑖 , 𝑡)

𝑁

𝑖=1

+ 
1
(𝑥)𝑤(1)(𝑥1, 𝑡) + 

𝑁
(𝑥)𝑤(1)(𝑥𝑁 , 𝑡) = ∑ 𝐻𝑖(𝑥)𝑤̅𝑖(𝑡)

𝑁+2

𝑖=1

(11) 144 

where, w̅j =wj (j =1, 2, ..., N), w̅N+1 =w
(1) 

1 , w̅N+2 =w
(1) 

N , Hi denotes the Hermite interpolation functions, which 145 

are defined as follows: 146 

𝐻𝑖(𝑥) = 𝜑𝑖(𝑥) =

{
 

 
1

(𝑥𝑖 − 𝑥1)(𝑥𝑖 − 𝑥𝑁)
𝑙𝑖(𝑥)(𝑥 − 𝑥𝑁)(𝑥 − 𝑥1)                  (𝑖 = 2, 3,… , 𝑁 − 1)

1

𝑥𝑖 − 𝑥𝑁−𝑖+1
𝑙𝑖(𝑥)(𝑥 − 𝑥𝑁−𝑖+1) − [𝑎𝑖𝑖 +

1

𝑥𝑖 − 𝑥𝑁−𝑖+1
]

𝑖
(𝑥)   (𝑖 = 1,𝑁)

(12) 147 

{
 

 𝐻𝑁+1(𝑥) = 
1
(𝑥) =

1

(𝑥1 − 𝑥𝑁)
𝑙1(𝑥)(𝑥 − 𝑥1)(𝑥 − 𝑥𝑁)

𝐻𝑁+1(𝑥) = 
𝑁
(𝑥) =

1

(𝑥𝑁 − 𝑥1)
𝑙𝑁(𝑥)(𝑥 − 𝑥𝑁)(𝑥 − 𝑥1)

(13) 148 

where, li(x) is the Lagrange interpolation polynomial, and aii denotes the weighting coefficient of the first 149 

derivative of the Lagrange polynomial, which are calculated according to the following formula. 150 

𝑙𝑖(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)… (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1)… (𝑥 − 𝑥𝑁)

(𝑥𝑖 − 𝑥1)(𝑥𝑖 − 𝑥2)… (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)… (𝑥𝑖 − 𝑥𝑁)
=∏

𝑥 − 𝑥𝑘
𝑥𝑖 − 𝑥𝑘

𝑁

𝑘=1
𝑘≠𝑖

(14) 151 

𝑎𝑖𝑗 =
𝜕𝑙𝑗(𝑥)

𝜕𝑥
|
𝑥=𝑥𝑖

=

{
 
 
 

 
 
 ∏ (𝑥𝑖 − 𝑥𝑘) ∏(𝑥𝑗 − 𝑥𝑘)

𝑁

𝑘=1
𝑘≠𝑖,𝑗

⁄ (𝑖 ≠ 𝑗)

𝑁

𝑘=1
𝑘≠𝑖,𝑗

∑
1

𝑥𝑖 − 𝑥𝑘
                                  (𝑖 = 𝑗)

𝑁

𝑘=1
𝑘≠𝑖

(15) 152 

To obtain the diagonal mass matrix of the element [16], the displacement field can be interpolated 153 

using Lagrange shape functions, which allows the integral formulation of the mass matrix to be constructed. 154 

𝑤(𝑥, 𝑡) =∑𝑙𝑖(𝑥)𝑤(𝑥𝑖 , 𝑡) =∑𝑙𝑖(𝑥)𝑤𝑖(𝑡)

𝑁

𝑖=1

𝑁

𝑖=1

(16) 155 

By substituting the Lagrange-based displacement field into Eq. (7), and further substituting Eq. (11) 156 

into Equations (8) and (9), the resulting formulations can be expressed using the dimensionless nodal 157 

coordinates i(i =1, 2, …, N), where  =(2x-L)/L, leading to: 158 

𝑇 =
1

2
∫

𝑚(𝜉)𝐿

2
(∑𝑙𝑖(𝜉)

𝑁

𝑖=1

𝑤̇𝑖(𝑡))

2

𝑑𝜉 =
1

−1

1

2
𝒘̇𝑻𝒎𝒘̇ (17) 159 

𝑈 =
1

2
∫ (

8𝐸𝐼(𝜉)

𝐿3
)(∑

𝑑2𝐻𝑖(𝜉)

𝑑𝜉2

𝑁+2

𝑖=1

𝑤̅𝑖(𝑡))

2

𝑑𝜉 =
1

−1

1

2
𝒘̅𝑻𝒌𝒘̅ (18) 160 

𝑊𝑛 =
1

2
∫ (

2𝑁(𝜉, 𝑡)

𝐿
)(∑

𝜕𝐻𝑖(𝜉)

𝜕𝜉

𝑁

𝑖=1

𝑤̅𝑖(𝑡))
1

−1

2

𝑑𝜉 =
1

2
𝒘̅𝑻𝒈𝒘̅ (19) 161 

where, ẇ denotes the first derivative of w with respect to time. The matrices m, k and g represent the 162 

mass matrix, stiffness matrix, and geometric stiffness matrix of the quadrature element, respectively. By 163 

employing numerical integration schemes (such as Gaussian or Gauss-Lobatto-Legendre (GLL) 164 

quadrature), the entries of these matrices can be expressed as follows: 165 
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𝑚𝑖𝑗 = ∫
𝑚(𝜉)𝐿

2
𝑙𝑖(𝜉)𝑙𝑗(𝜉)

1

−1

𝑑𝜉 =
𝐿

2
∑𝐺𝑘𝑚(𝜉𝑘)

𝑁

𝑘=1

𝑙𝑘𝑖  𝑙𝑘𝑗 =
𝐿

2
𝐺𝑖𝑚(𝜉𝑖)𝑙𝑖𝑗

                                                                                                                (𝑖, 𝑗 = 1, 2, … ,𝑁) (20)

 166 

𝑔𝑖𝑗 =
2

𝐿
∫ 𝑁(𝜉, 𝑡)

𝑑𝐻𝑖(𝜉)

𝑑𝜉

𝑑𝐻𝑗(𝜉)

𝑑𝜉

1

−1

𝑑𝜉 =
2

𝐿
∑𝑁(𝜉𝑘 , 𝑡)𝐺𝑘

𝑁

𝑘=1

𝐴𝑘𝑖𝐴𝑘𝑗

                                                                                      (𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑁 + 1,𝑁 + 2) (21)

 167 

𝑘𝑖𝑗 = ∫ (
8𝐸𝐼(𝜉)

𝐿3
)
𝑑2𝐻𝑖(𝜉)

𝑑𝜉2
𝑑2𝐻𝑗(𝜉)

𝑑𝜉2

1

−1

𝑑𝜉 = ∑𝐺𝑘 (
8𝐸𝐼(𝜉𝑘)

𝐿3
)
𝑑2𝐻𝑖(𝜉𝑘)

𝑑𝜉2
𝑑2𝐻𝑗(𝜉𝑘)

𝑑𝜉2
𝑑𝜉

𝑁

𝑘=1

=
8

𝐿3
∑𝐺𝑘𝐸𝐼

𝑁

𝑘=1

(𝜉𝑘)𝐵𝑘𝑖𝐵𝑘𝑗                                     (𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑁 + 1,𝑁 + 2) (22)

 168 

Here, Gk denotes the weight corresponding to the integration point; Aij and Bij represent the weighting 169 

coefficients of the first and second derivatives of the shape function Hi at the element nodes, respectively. 170 

According to the differentiation rules of the DQM, these coefficients can be explicitly calculated. 171 


𝑗

(𝑘)(𝜉𝑖) =
1

(𝜉𝑗 − 𝜉𝑁−𝑗+1)
{
𝑙𝑗
[𝑘](𝜉𝑖)(𝜉𝑖 − 𝜉1)(𝜉𝑖 − 𝜉𝑁) + 𝑘(𝑘 − 1)𝑙𝑗

[𝑘−2](𝜉𝑖)

+ 𝑘𝑙𝑗
[𝑘−1](𝜉𝑖)[(𝜉𝑖 − 𝜉1) + (𝜉𝑖 − 𝜉𝑁)]

}

                                                                                                  (𝑗 = 1,𝑁; 𝑖 = 1, 2,… , 𝑁) (23)

 172 

 173 

𝜑𝑗
(𝑘)(𝜉𝑖) =

1

(𝜉𝑗 − 𝜉𝑁−𝑗+1)
[𝑙𝑗
[𝑘](𝜉𝑖)(𝜉𝑖 − 𝜉𝑁−𝑗+1) + 𝑘𝑙𝑗

[𝑘−1](𝜉𝑖)] − [𝑙
′
𝑗(𝜉𝑗) +

1

𝜉𝑗 − 𝜉𝑁−𝑗+1
]

𝑗

[𝑘](𝜉𝑖)

                                                                                                           (𝑗 = 1, 𝑁; 𝑖 = 1, 2,… , 𝑁) (24)

 174 

 175 

𝜑𝑗
(𝑘)(𝜉𝑖) =

1

(𝜉𝑗 − 𝜉1)(𝜉𝑗 − 𝜉𝑁)
{
𝑙𝑗
[𝑘](𝜉𝑖)(𝜉𝑖 − 𝜉1)(𝜉𝑖 − 𝜉𝑁) + 𝑘(𝑘 − 1)𝑙𝑗

[𝑘−2](𝜉𝑖)

+ 𝑘𝑙𝑗
[𝑘−1](𝜉𝑖)[(𝜉𝑖 − 𝜉1) + (𝜉𝑖 − 𝜉𝑁)]

} 

                                                                                 (𝑗 = 2, 3, … , 𝑁 − 1; 𝑖 = 1, 2,… , 𝑁) (25)

 176 

After obtaining Aij by setting k=1, Bij can be conveniently calculated using the following expression: 177 

𝐵𝑖𝑗 = ∑𝐴𝑖𝑘𝐴𝑘𝑗

𝑁

𝑘=1

(26) 178 

2.2.2 Global governing equation 179 

The global governing equation of the structure considering the P–Δ effect can be obtained by 180 

assembling the element matrices. 181 
𝑴𝒘̈ + (𝑲 − 𝑮)𝒘 = 𝑭 (27) 182 

where, M denotes the global mass matrix, K the global stiffness matrix, G the global geometric stiffness 183 

matrix, F the global equivalent load vector, and w the vector of lateral nodal displacements of the structure. 184 

For a cantilever beam model discretized into Z elements with N nodes per element, the global 185 

equivalent load vector is denoted by 𝑭 = {𝑭𝑤
𝑇 , 𝜴𝜃

𝑇}𝑇, namely 186 
𝑭𝑤 = {𝑓1

𝑒1 , … , 𝑓𝑁
𝑒1 + 𝑓1

𝑒2 , … , 𝑓𝑁
𝑒2 + 𝑓1

𝑒3, … , … , 𝑓𝑁
𝑒𝑍}𝑇 (28) 187 

 188 
𝜴𝛩 = {𝛺1

𝑒1, 𝛺𝑁
𝑒1 + 𝛺1

𝑒2, … , … , 𝛺𝑁
𝑒𝑍}𝑇 (29) 189 

When constructing the global stiffness matrix of the structure using the QEM, the effects of nodal 190 

rotations are inherently included. However, the primary interest lies in the nodal transverse displacement 191 

response. To this end, the horizontal displacement vector W is designated as the primary degrees of freedom, 192 

while the nodal rotation vector θ is treated as dependent degrees of freedom. Accordingly, the displacement 193 

and rotation components can be decoupled, and the structural vibration governing equation can be written 194 

as: 195 

[
𝑴𝑤 𝟎
𝟎 𝑴𝜃

] {𝑾̈
𝜽̈
} + [

𝑲𝑤𝑤 𝑲𝑤𝜃
𝑲𝜃𝑤 𝑲𝜃𝜃

] {
𝑾
𝜽
} = {

𝑭𝑤
𝜴𝜃
} (30) 196 
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By setting Mθ =0, the following is obtained: 197 

𝜽 = 𝑲𝜃𝜃
−1𝜴𝜃 −𝑲𝜃𝜃

−1𝑲𝜃𝑤𝑾 (31) 198 
𝑴𝑤𝑾̈ + 𝑲𝑤𝑾 = 𝑭 (32) 199 

Here 200 

𝑲𝑤 = 𝑲𝑤𝑤 −𝑲𝑤𝜃𝑲𝜃𝜃
−1𝑲𝜃𝑤 201 

𝑭 = 𝑭𝑤 −𝑲𝑤𝜃𝑲𝜃𝜃
−1𝑾𝜃 202 

It is evident that Eq. (32) represents the standard structural dynamic governing equation, which 203 

involves only the primary degree of freedom vector W. Once this governing equation is established, the 204 

dynamic response of the structure can be obtained using the unconditionally stable Newmark average 205 

acceleration method. 206 

3. Verification and Method Comparison 207 

3.1 Bridge Piers and Seismic Motions 208 

Tubaldi [1,14] demonstrated that tall piers exhibit pronounced sensitivity in their dynamic  209 

characteristics to axial loading; However, his analytical model is not capable of addressing scenarios 210 

involving time-varying axial forces induced by significant vertical seismic components. Accordingly, this 211 

section employs one real tall bridge-pier, provided by Li [17], to conduct a bidirectional seismic response 212 

analysis using the proposed methods. The tall pier is characterized by a cracked-section stiffness of 213 

EI=2.225×108 kN·m², a distributed mass of m(y)=19.87 t/m, and a concentrated top mass of MT=700 t. The 214 

corresponding mechanical models are illustrated in Fig. 3. 215 

 216 
Fig. 3. Parameters of real bridge pier case. 217 

This study utilizes the classical 1941 El Centro earthquake record, which includes vertical components. 218 

Fig. 4 depicts their acceleration time histories. Notably, when using the DQM, the continuous mass 219 

distribution function m(y) must be interpolated to smoothly incorporate the concentrated top mass MT. In 220 

contrast, within the QEM framework, MT can be directly assigned to the last entry of the global mass 221 

matrix—namely, at the final node of the last element.  222 

 223 
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Fig. 4. Time history of horizontal and vertical seismic acceleration. 224 

3.2 Comparison of Dynamic Characteristics 225 

Table 1 provides a detailed comparison of the first three natural vibration periods of the pier under 226 

both unloaded and axially loaded conditions, as calculated using the DQM, the QEM, and the analytical 227 

solution proposed by Tubaldi [14]. These comprehensive results offer a clear basis for evaluating the 228 

accuracy and reliability of the numerical methods in relation to the analytical benchmark. 229 

 230 

Table 1. The first three order natural periods for pier 1(s). 231 

Mode 
Without axial load  With axial load 

DQM Tubaldi QEM  DQM Tubaldi QEM 

1 6.9445 6.968 6.9681  7.6619 7.692 7.6919 

2 0.8781 0.884 0.8840  0.8891 0.895 0.8950 

3 0.2899 0.292 0.2919  0.2912 0.293 0.2932 

 232 

The above table illustrate the influence of axial loads on the structural characteristics of bridge piers. 233 

Building upon this, the QEM introduced in this study can be further employed to investigate the effects of 234 

time-varying axial forces on structural characteristics in greater depth. This influence is further illustrated 235 

by the structural configuration shown in the figure below. 236 

 237 

Fig.5. Structural natural frequency under different loading states. 238 

In Fig. 5, N denotes the vertical axial force, G represents the vertical seismic load, and ωt indicates 239 

the time-varying frequency. Under the influence of time-dependent axial loading, the structural frequency 240 

is no longer constant but varies with changes in axial force. As shown in the figure, after accounting for 241 

the P–Δ effect, the fundamental frequency of the structure decreases from 0.9016 to 0.8168. Furthermore, 242 

when the time-varying axial force is considered, the structural frequency exhibits a slight additional 243 

reduction (approximately 0.09%). Subsequently, the time history of the structural frequency closely 244 

follows the profile of the vertical ground motion. This phenomenon arises from the assumption of infinite 245 

axial stiffness, which neglects axial deformation and directly equates the vertical load to the axial force. 246 

3.3 Comparison of seismic response 247 

The top of the pier was chosen as the observation point to compare and analyze the time‑history 248 

responses under P‑Δ effects and time‑varying axial forces (vertical seismic motion), and to examine its 249 

maximum lateral displacement characteristics. 250 
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 251 
Fig.6. Maximum lateral displacement and time histories curve at the pier top. 252 

It can be observed that the results obtained from DQM and QEM are largely consistent, which verifies 253 

the accuracy and feasibility of both numerical methods in structural dynamic analysis. In addition, the 254 

results considering the second-order gravity effect are nearly identical to those that also account for time-255 

varying axial forces. This is because, although time-varying axial forces can alter the natural frequency of 256 

the structure, the magnitude of this influence is relatively small, and thus their overall impact on structural 257 

response is limited. 258 

4. Conclusions 259 

Two high‑precision methods for dynamic P–Δ analysis of bridge piers are discussed. Compared with 260 

conventional approaches, these methods not only accommodate static axial loads but also effectively 261 

handle responses under coupled bidirectional seismic excitations. Crucially, both achieve high‑accuracy 262 

solutions without complex iterative procedures. The main conclusions are:  263 

(1) The P–Δ effect can be either beneficial or detrimental, depending on the magnitude of external 264 

loads and the relationship between the pier’s natural frequencies and the excitation frequencies. 265 

(2) The high‑precision P–Δ analysis based on the Quadrature Element Method (QEM) shows greater 266 

adaptability in dealing with geometric or material discontinuities. Compared to the Differential Quadrature 267 

Method (DQM), QEM is more convenient and flexible for practical applications. 268 

(3) Neglecting axial deformation, the influence of time‑varying axial forces on bridge piers is relatively 269 

minor, since their effect on the geometric stiffness matrix is limited. Consequently, the structure’s natural 270 

frequencies do not undergo significant fluctuations, and this influence can be considered negligible. 271 
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